注水井動態(tài)與油井流入動態(tài)類似,注水井動態(tài)是研究注水井的吸水能力及其影響因素。利用注水井指示曲線可以分析地層吸水能力的變化,判斷井下工具狀況。
1.注水井指示曲線注水井指示曲線是指穩(wěn)定流動條件下,注入壓力與注水量的關系曲線。小層指示曲線為各小層注入壓力與小層注水量之間的關系,可用投球測試法獲得。實測指示曲線有直線型和折線型。圖7-5中,直線遞增式的曲線1反映地層的吸水規(guī)律。垂直式曲線2表明油層的滲透性極差、水嘴堵死或測試故障。遞減式曲線3和曲拐式曲線4是不正常的指示曲線。曲線5為上翹式,反映地層連通性差,注入水不易擴散,阻力增大、壓力升高、注入量增幅減少。曲線6為下折式,表示在較高注水壓力下,有新油層開始吸水或是地層產(chǎn)生微裂縫,致使油層吸水量增大。
圖7-5 指示曲線的形狀
指示曲線斜率的倒數(shù)就是吸水指數(shù)(Injectivity Index),表示注水井單位井底壓差下的日注水量,描述注水井單井或單層的吸水能力。單位油層厚度上的吸水指數(shù)稱為比吸水指數(shù)或每米吸水指數(shù)。日注水量與井口注入壓力之比稱為視吸水指數(shù)。
2.吸水剖面吸水剖面(Water Injection Profile)形象地描述了注水井的分層吸水能力。常用同位素載體法測吸水剖面,將吸附放射性同位素的固相載體加入水中,調(diào)配成活化懸浮液。注入水進入地層深部時,固相載體濾積在巖層表面。固相載體具有牢固的吸附性和均勻的懸浮性,所以在吸水量大的層段積聚的多,放射性強度大。注入活化懸浮液前后各進行一次放射性測井,將測得的兩條放射性曲線迭合,就得到吸水剖面。曲線異常處即為吸水層位(圖7-6)。各層異常面積占全井異常面積的百分數(shù)即為相對吸水量,即某小層的吸水量占全井吸水量的百分數(shù)。井溫法也可用于確定吸水層位。
圖7-6 吸水剖面
3.指示曲線分析指示曲線反映地層的吸水能力和吸水規(guī)律。對比不同時期所測的指示曲線就可以了解油層吸水能力的變化。圖7-7~圖7-10中曲線Ⅰ為先測曲線,曲線Ⅱ為一段時間后所測的曲線。
圖7-7 指示曲線右移
圖7-10 曲線平行下移
(1)指示曲線右移、斜率變小,說明吸水指數(shù)變大,地層吸水能力增強(圖7-7)。
(2)指數(shù)曲線左移、斜率變大,說明吸水指數(shù)變小,地層吸水能力變差(圖7-8)。
圖7-8 指示曲線左移(3)指示曲線平行上移,是由地層壓力升高引起,斜率不變說明吸水能力未變(圖7-9)。
圖7-9 曲線平行上移
(4)指示曲線平行下移,是地層壓力下降所致,斜率不變說明吸水能力未變(圖7-10)。
正常注水時一般只測全井注水量??捎媒诘姆謱訙y試資料整理出分層指示曲線,求得近期正常注水壓力下各層吸水量及全井注水量,計算各層的相對注水量,再把目前實測的全井注水量按比例分配給各層段。
五、注水工藝由注水井將水保質(zhì)保量地注入特定的油層是注水工藝的主要內(nèi)容。油田注水系統(tǒng)包括油田供水系統(tǒng)、油田注水地面系統(tǒng)、井筒流動系統(tǒng)和油藏流動系統(tǒng)。
1.注入系統(tǒng)注入系統(tǒng)包括油田地面注水系統(tǒng)和井筒流動系統(tǒng)。由注水站、配水間、井口、井下配水管柱及相應管網(wǎng)組成。
有些井是專門為注水而鉆的注水井,將低產(chǎn)井、特高含水油井及邊緣井轉(zhuǎn)成注水井的誘惑力也很強。注水井的井口設備是注水用采油樹。井下結構以簡單為好,一般只需要管柱和封隔器。多口注水井構成注水井組,由配水間分配水量。在井口或配水間可添加增壓泵及過濾裝置,一般在配水間對各注水井進行計量。
注水站是注水系統(tǒng)的核心。站內(nèi)基本流程為:來水進站→計量→水質(zhì)處理→儲水罐→泵出。儲水罐有儲水、緩沖壓力及分離的作用。注水站可以對單井或配水間分配水量。注水管網(wǎng)的直徑和長度直接影響注水成本。
2.分層注水分層注水的核心是控制高滲透層吸水,加強中、低滲透層吸水,使注入水均勻推進,防止單層突進。井下管柱有固定配水管柱(圖7-11)、活動配水管柱和偏心配水管柱。配水器產(chǎn)生一定的節(jié)流壓差以控制各層的注水量。分層配水的核心是選擇井下水嘴,利用配水嘴的尺寸、通過配水嘴的節(jié)流損失來調(diào)節(jié)各層的配水量,從而達到分層配注的目的。
圖7-11 固定配水管柱
3.注水工藝措施油層進入中高含水期后,平面矛盾、層間矛盾及層內(nèi)矛盾日益突出。在非均質(zhì)油田中,性質(zhì)差異使各層段的吸水能力相差很大,注水井吸水剖面極不均勻。有裂縫的高滲透層吸水多,油井嚴重出水;中、低滲透層吸水很少,地層壓力下降快,油井生產(chǎn)困難。需要對高滲透層進行調(diào)堵,降低吸水能力;改造低滲透層,降低流動阻力。因此,改善吸水剖面,達到吸水均衡,可以提高注入水體積波及系數(shù)。
增壓注水是提高井底注入壓力的工藝措施。高壓使地層產(chǎn)生微小裂縫、小孔道內(nèi)產(chǎn)生流動、低滲透層吸水。適當提高注入壓力可均衡增加各層的吸水能力。
脈沖水嘴增壓是使水流產(chǎn)生大幅度脈動,形成高頻水射流。高頻壓力脈沖能使近井區(qū)的污染物松動、脫落;分散固相顆粒及異相液滴,起防堵、解堵、增注的作用。脈沖水嘴增壓適用性較強,不需改變原有配水及測試工藝,也不增加投資。
周期注水也稱間歇注水或不穩(wěn)定注水。周期性地改變注水量和注入壓力,形成不穩(wěn)定狀態(tài),引起不同滲透率層間或裂縫與基巖間的液體相互交換。滲透率差異越大,液體的交換能力越強,效果越好。此方法可降低綜合含水率。
調(diào)堵方法有三類:機械法是用封隔器封堵特高吸水層段或限流射孔;物理法是用固體顆粒、重油或泡沫等封堵高滲透層段;化學法現(xiàn)場應用最廣,作用機理不盡相同。為滿足不同注水井的需要,各種調(diào)剖技術不斷涌現(xiàn)。
礦化度較低的注入水會打破地層原有的相對平衡,導致粘土水化膨脹。礦化度梯度注水是逐漸降低注入水的礦化度。梯度越小,粘土礦物受到的沖擊越小,地層傷害也越小。
強磁處理可使注入水的性質(zhì)發(fā)生變化,抑制粘土膨脹、防垢效果十分明顯。還可注入防膨劑段塞抑制粘土的水化膨脹。綜合應用粘土防膨技術,可增加吸水量、降低注入壓力,大幅度增強處理效果。各種注水工藝措施有其特定的適應性。不斷開發(fā)注水工藝新技術,會持續(xù)提高注水開發(fā)油田的效果。
管理員
該內(nèi)容暫無評論